

Collimation studies with hollow electron beams

Giulio Stancari

Fermilab, Accelerator Physics Center Experimental Beam Physics Dept.

with A. Valishev, G. Annala, A. Drozhdin, G. Kuznetsov*, G. Saewert, V. Shiltsev, D. Still, L. Vorobiev (APC and AD/Tevatron)

Thanks to AD Operations, CDF and DZero for support and study time

All Experimenters Meeting, February 21, 2011

Concept of hollow electron beam collimator (HEBC)

Halo experiences nonlinear transverse kicks:

$$\theta_r = \frac{2 I_r L (1 \pm \beta_e \beta_p)}{r \beta_e \beta_p c^2 (B\rho)_p} \left(\frac{1}{4\pi\epsilon_0}\right)$$

About **0.2** µrad in TEL2 at 980 GeV

For comparison: multiple scattering in Tevatron collimators $\theta_{\rm rms} = 17 \ \mu {\rm rad}$

Shiltsev, BEAM06, CERN-2007-002 Shiltsev et al., EPACo8

Concept of hollow electron beam collimator (HEBC)

Cylindrical, hollow, magnetically confined, pulsed **electron beam** overlapping with halo and leaving core unperturbed

Shiltsev, BEAM06, CERN-2007-002 Shiltsev et al., EPACo8

The conventional two-stage collimation system

- ▶ Goals of collimation:
 - reduce beam halo
 - direct losses towards absorbers
- Conventional schemes:
 - primary collimators
 - Tevatron: 5-mm W at 5σ
 - LHC: 0.6-m carbon jaws at 6σ
 - secondary collimators
 - Tevatron: 1.5-m steel jaws at 6σ
 - ▶ LHC: 1-m carbon/copper at 70

A good complement to a two-stage system for high intensities?

- ▶ Can be close to or even overlap with the main beam
 - no material damage
 - continuously variable strength ("variable thickness")
- ▶ Works as "soft scraper" by enhancing diffusion
- ▶ Low impedance
- ▶ Resonant excitation is possible (pulsed e-beam)
- ▶ No ion breakup
- ▶ Position control by magnetic fields (no motors or bellows)
- ▶ Established e-cooling / e-lens technology
- ▶ Critical beam alignment
- ▶ Control of hollow beam profile
- ▶ Beam stability at high intensity
- **▶** Cost

The 15-mm hollow electron gun

Copper anode side view

top view

Yield: **1.1 A** at 4.8 kV Profile measurements

0.8 CURRENT DENSITY (a.u.) 0.6 0.4 0.2 10

Tungsten dispenser cathode with convex surface 15-mm diameter, 9-mm hole 1.0

1010

Installation in existing Tevatron electron lens (TEL2)

TEL:	parame	ters
------	--------	------

Peak energy	10 keV
Peak current	3 A
Max gun field	0.4 T
Max main field	6.5 T
Length	2 m
Rep. period	7 μs

- ▶ TEL1 used for abort-gap clearing during normal operations
- ▶ TEL2 used as TEL1 backup and for studies

200 ns

HEBC acting on 1 antiproton bunch train (A13-A24)

Removal rate: affected bunch train relative to other 2 trains

Is the core affected? Are particles removed from the halo?

Three strategies:

- ▶ Check **emittance** evolution
- ▶ Compare **intensity** and **luminosity** variations when removing antiprotons:

$$\mathcal{L} = \left(\frac{f_{\text{rev}} N_b}{4\pi}\right) \frac{N_p N_a}{\sigma^2} \qquad \frac{\Delta \mathcal{L}}{\mathcal{L}} = \frac{\Delta N_p}{N_p} + \frac{\Delta N_a}{N_a} - 2\frac{\Delta \sigma}{\sigma}$$

- ▶ <u>same fractional variation</u> if other factors are constant
- ▶ luminosity decreases <u>more</u> if there is emittance growth or proton loss
- luminosity decreases <u>less</u> if removing halo particles (they do not contribute to the luminosity measurement)
- ▶ Estimate **halo population** and **diffusion** rates directly with collimator scans

Emittances of affected bunch train

Luminosity of affected bunch train relative to other 2 trains

Halo populations from collimator scan - preliminary

HEBC on second antiproton train, 3.5σ hole (1.3 mm at collimator) Vertical collimator scan

HEBC scraped only 1% of total intensity, but tails were reduced by up to 40%

down towards beam center

Conclusions

- ▶ Prototype hollow gun installed in the Tevatron (TEL2) in Aug 2010
- ▶ Studies started in Oct 2010
- ▶ Alignment is reproducible
- ▶ With aligned beams, no instabilities or emittance growth
- Studies are mostly parasitical
- Observed scraping effect of hollow electron beam collimator
- ▶ Observed differential halo/core scraping and reduction of tails
- ▶ Next studies: diffusion, efficiency, protons
- ▶ Design of 25-mm cathode (higher current, larger hole for protons)
- New guest scientist joined group to work on modeling
- ▶ Collaboration with LHC Collimation Group; project is partially Thanks for your attention

supported by U.S. LARP

Backup slides

Brief project history

Summer '09

- ▶ Hollow gun design (Kuznetsov, Vorobiev)
- ▶ TEL2 BPM software upgrade (Romanov/BINP)
- ▶ Aug 'o9: Hollow gun manufactured and delivered (Hi-Tech Mfg)
- Fall/winter '09:
 - ▶ Hollow beam dynamics studies in test stand (Valishev, gs)
 - ▶ TEL2 BPM calibrations (Valishev, gs)

August '10:

- ▶ Hollow gun installed in TEL2 (Kuznetsov, Sylejmani, gs)
- ▶ Complete system test (Saewert, Simmons, Crisp, Fellenz,
- Kuznetsov, Zhang, gs)
- Verified abort-gap clearing as TEL1 backup (Zhang)
- ▶ October '10: First Tevatron experiments (Valishev, gs)

Modeling and simulations

kick maps in overlap region

- tracking software
- with lattice/apertures

- ▶ analytical form, ideal case
- ▶ 2D from measured profiles
- ▶ 3D particle-in-cell
 - ▶ TEL2 bends
 - profile evolution
 - misalignments

- ▶ Tevatron: STRUCT (Drozhdin), Lifetrac (Valishev)
- ▶ LHC: SixTrack (Smith/SLAC → Bruce/CERN)
- ▶ hollow e-beam dynamics: analytical/xpdp2/Warp (Chung, gs)
- ▶ I. Morozov (guest scientist) joining Jan '11 for 1 year

Fermilab electron-lens test bench (lower linac gallery)

High-perveance **electron guns**: peak current ~4 A @ 10 kV pulse width ~ μs

Water-cooled **collector** with 0.2-mm pinhole for profile measurements

Gun/main/collector solenoids < 0.4 T magnetic correctors pickup electrodes

Performance of hollow cathode vs. voltage and temperature

temperature limited

space-charge limited $I \propto V^{3/2}$

Hollow gun performance in TEL2 after cathode conditioning

0.6-in hollow gun in TEL2 Yield vs. voltage (shortest pulse)

Measured profile evolution with current and voltage at 3 kG

Warp calculation of 2D fields from measured profiles

thanks to D. Grote, J.-L. Vay, M. Venturini (LBL) for kind support

Electric fields at 0.5 kV, 44 mA

CALCULATED HOLLOW-BEAM FIELD from MEASURED PROFILE at 66W 0.5kV 3kG 44mA

Example of transverse beam profiles at TEL2

Collimation of antiprotons

We chose to start with antiproton bunches:

- ▶ lower emittances and intensities, larger magnetic field ⇒ more stable
- ▶ in Tev lattice, TEL2 more similar to pbar collimator ⇒ better capture

0.6-in hollow-gun electron beam sizes vs. magnetic field

e-beam pulse synchronization with antiproton bunch

